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LETTER TO THE EDITOR

TheSO(N ) principal chiral field on a half-line

N J MacKay†
Department of Applied Mathematics, University of Sheffield, Sheffield, S3 7RH, UK

Received 24 February 1999, in final form 17 March 1999

Abstract. We investigate the integrability of theSO(N) principal chiral model on a half-line, and
find that mixed Dirichlet/Neumann boundary conditions (as well as pure Dirichlet or Neumann)
lead to infinitely many conserved charges classically in involution. We use an anomaly-counting
method to show that at least one non-trivial example survives quantization, compare our results
with the proposed reflection matrices, and, based on these, make some preliminary remarks about
expected boundary bound-states.

1. The principal chiral field

We first recall some preliminaries. A full treatment of the model on the infinite line can be
found elsewhere [1]. The principal chiral model may be defined by the Lagrangian

L = Tr(∂µg
−1∂µg) (1)

where the fieldg(xµ) takes values in a compact Lie groupG, here chosen to beSO(N). It has
a globalGL × GR symmetry with conserved currents

j (x, t)Lµ = ∂µgg−1 j (x, t)Rµ = −g−1∂µg (2)

which take values in the Lie algebrag of G: that is,j = jata (for jL or jR: henceforth we
drop this superscript) whereta are the generators ofg. The equations of motion are

∂µjµ(x, t) = 0 ∂µjν − ∂νjµ − [jµ, jν ] = 0 (3)

which may be combined as

∂−j+ = −∂+j− = − 1
2[j+, j−] (4)

in light-cone coordinatesx± = 1
2(t ± x). The PCM has additional involutive discrete

symmetries (‘parities’)

π : g 7→ g−1⇒ jL ↔ jR (5)

and, forG = SO(N),
τ : g 7→ MgM−1⇒ jL 7→ MjLM−1 jR 7→ MjRM−1 (6)

whereM is anO(N) matrix with determinant−1.
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2. Boundary conditions for the half-line

We place the model on the half-line−∞ < x < 0. Immediate suggestions for boundary
conditions (BCs) might be the (free) Neumann condition∂1g = 0 at x = 0, implying
jL1 (0, t) = jR1 (0, t) = 0, or the Dirichlet condition∂0g = 0 at x = 0, implying
jL0 (0, t) = jR0 (0, t) = 0. Following Moriconi and de Martino [2], we generalize these to
mixed conditions, with (bothL andR) j0(0, t) = 0 onM components of the quantum vector
multiplet, andj1(0, t) = 0 on theN −M others. This implies

j1(0, t) ∈ SO(M) j0(0, t) ∈ SO(N −M) (7)

which, along withjµ → 0 asx → −∞, we shall take as our classical BCs. We have not
attempted to find BCs which distinguishL from R. Neither have we found the boundary
Lagrangian corresponding to the Dirichlet conditions.

It immediately follows from (3) that

∂1j0(0, t) = ∂0j1(0, t) ∈ SO(M)
∂1j1(0, t) = ∂0j0(0, t) ∈ SO(N −M)

and thence thatall higher derivatives ofj0 andj1 at x = 0 are in either theSO(M) or the
SO(N −M) subgroup.

3. Local conserved charges on the half-line

In a recent work [1] we investigated local conserved charges on the full line, and found that
the densities of the (odd-spins) simple charges

qs =
∫ ∞
−∞

Tr(j s+1
+ ) q−s =

∫ ∞
−∞

Tr(j s+1
− ) (8)

(which arise from the conservation laws

∂− Tr(j s+1
+ ) = 0 ∂+ Tr(j s+1

− ) = 0 (9)

must be generalized to certain polynomials in order to obtain a set which commutes both
mutually and with the Pfaffian charge, which exists only forN even, and arises from

∂−(εi1i2...iN−1iN (j+)i1i2 . . . (j+)iN−1iN ) = 0. (10)

We first demonstrate that our BCs lead to the conservation of

q|s| ≡ qs + q−s (11)

on the half-line. This follows from

dq|s|
dt
=
∫ 0

−∞
dx ∂0 Tr(j s+1

+ ) + ∂0 Tr(j s+1
− )

=
∫ 0

−∞
dx ∂1 Tr(j s+1

+ )− ∂1 Tr(j s+1
− )

= Tr(j (0, t)s+1
+ − j (0, t)s+1

− ) (12)

becauses is odd, the trace always is always of the form Tr(j0(0, t)j1(0, t) . . .), and so vanishes.
Further, from the calculation on the full line [1], we see that on the half-line

{q|r|, q|s|} = (const)[Tr(tcj+(0, t)
s)Tr(tcj+(0, t)

r )− Tr(tcj−(0, t)s)Tr(tcj−(0, t)r )]
= (const)Tr(j−(0, t)r+s − j+(0, t)

r+s)
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by completeness, and so also vanishes. The same reasoning ensures conservation and
commutation of the polynomial charges. However, it doesnot imply the conservation of
the Pfaffian charge, and we have found no subtler reasoning which does so. Thus, the simple
charges (11) are the maximal commuting set we have found.

For the groupSO(N) the Pfaffian charge is the only charge which is odd underτ . Further,
if we had consideredSU(N), where conserved charges on the full line exist fors both odd and
even, the reasoning above would have failed to guarantee conservation of the even-s charges,
which are precisely those odd underπ . Our suspicion is therefore that, in general, only charges
which are even under all such parities are conserved on the half-line with mixed BCs, so that
boundary scattering will mix parity-doublets. This is reminiscent of the situation in affine
Toda field theories [3], where general BCs did not imply conservation of odd-spin charges.

Finally we consider quantum charge conservation. Here the only method available is the
anomaly-counting of Goldschmidt and Witten [4], and the only non-trivial (i.e.s > 1) charge
which this method guarantees to be conserved on the full-line, and which we have found to
be classically conserved on the half-line, is that fors = 3. The point is that the classical
conservation law is modified by quantum anomalies [4, 1] to become

∂− Tr(j4
+) + ∂+ Tr(j4

−) = c1(∂+ Tr(j+∂
2
+j+ + 1

2j−[j+, ∂+j+]) + ∂− Tr(j−∂2
−j− + 1

2j+[j−, ∂−j−]))

+c2(∂+(Tr(j−j+)Tr(j2
+)) + ∂−(Tr(j+j−)Tr(j2

−)))

+c3(∂+ Tr(j−j3
+) + ∂− Tr(j+j

3
−))

+c4(∂− Tr((∂+j+)
2) + ∂+ Tr((∂−j−)2))

+c5(∂− Tr(j2
+)

2 + ∂+ Tr(j2
−)

2)

(for some unknownci), the most general anomaly possible with the correct symmetries. On
the full line it is enough for conservation that the right-hand side is a total derivative, but on the
half-line we must check [2] that the coefficients of eachci individually satisfy the procedure
laid out in (12). They do so, and there is thus at least one non-trivial quantum conserved charge
on the half-line, which should be enough to ensure quantum integrability.

4. BoundaryS-matrices and the spectrum

Recall that the bulk spectrum consists of particle multiplets with massesma = 2m sin( aπ
N−2),

in representations(V , V ) of GL×GR, whereV is a reducible representation ofG whose highest
component is theath fundamental representation ofG. These run froma = 1 to a = n − 1
whereN = 2n + 1, or a = n − 2 whereN = 2n. There are also spinor multiplets: one
in the former case, two in the latter, which form aτ -doublet. In fact the particle multiplets
represent a larger Yangian algebra of non-local charges,YL(g)× YR(g), of which they are the
fundamental irreducible representations.

On the half-line, if we are correct in believing that odd-parity charges are not conserved,
the parity-doublets will be broken. Further, the chargesQa = ∫ ja0 dx which generateGL×GR
were considered on the half-line by Mourad and Sasaki [5], who pointed out that

dQa

dt
= ja1 (0, t). (13)

ThoseQa corresponding to a residualSO(N−M)L×SO(N−M)R symmetry therefore remain
conserved, as might be expected given that the BC was free for precisely those components.
We have found no residue of the non-local charges and thus of the Yangian symmetry, however.

Let us finish by comparing our results briefly with the reflection matrices which, building
on the work of Cherednik [6], we have constructed [7] for the scattering of the first (vector)
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and second (adjoint⊕singlet) (as representations ofG) multiplets of the bulk theory off the
boundary. These contain a residualSO(N−M) symmetry, and so might be expected to match
the BCs given. The decomposition of the boundaryS-matrices appears not to respect any
residual Yangian symmetry, again as expected.

The first and second multipletS-matrices take the form

K1(θ) = τ1(θ)(P
− − [N − 2M]P +)

K2(θ) = τ2(θ)(P
−
A − [N − 2M − 2]P2 + [N − 2M − 2][N − 2M + 2]P +

A)
(14)

whereτ1 andτ2 are scalar prefactors [7] with no physical-strip poles, and

[x] = θ + ixπ/2h

θ − ixπ/2h
(15)

(with h = 2n − 2). P + andP− are orthogonal projectors, of dimensionsM andN − M
respectively, taking the forms

P + =
(
IM L

0 0

)
and P− =

(
0 −L
0 IN−M

)
(16)

whereL is anM × (N −M)matrix which cannot be determined by the boundary YBE or the
crossing/unitarity condition.P +

A andP−A project similarly onto the second-rank antisymmetric
tensor, whilstP2 is a mixed projector for which we have no interpretation. To describe the
principal chiral model we must use

X1(θ)K1L(θ)⊗K1R(θ)

whereX1(θ) is a CDD factor with a zero atθ = N−2M
2h iπ (and no poles on the physical

strip), introduced so that the overall pole here remains simple†. (Notice also that if boundary
scattering really does mix parity-doublets then some more complicated construction would be
needed if we were dealing with spinor, as opposed to vector, multiplets.)

What isL for our boundary conditions? Recall our comment at the end of section two,
that atx = 0 not onlyj0 andj1 but also all their (time-andspace-)derivatives are in either the
SO(M) or theSO(N −M) subgroup. If the same is true of the boundary Lagrangian, then
there will be no operator in the model which can link theM andN −M sub-multiplets, and
we must haveL = 0‡.

To understand the full pole structure, and thus the spectrum, is a longer-term project.
Fusing to obtain higher projectors is a difficult calculation, and without doing so we can make
no definite statements: fused scalar prefactors can easily be vitiated by cancellations in the
matrix structure. However, it is simple to see thatKa will have a pole factor [N−2M+2a−2],
and we believe that this projects onto theSO(M)-restriction of theath antisymmetric tensor.
Following the ideas of Ghoshal and Zamolodchikov [10], in which a pole at iθ0 inKa leads to a
boundary bound-state (BBS) of massma cosθ0, the BBS spectrum may therefore be expected,
for M < N/2, to include states of mass

m′1 = 2m sin
(π
h

)
sin

(
(M − 1)π

h

)
. . .

m′a = 2m sin
(aπ
h

)
sin

(
(M − a)π

h

)
† A suitableX1 may be obtained by settingx = 1 + 2M − 2N in a minimal version (that is, with coupling-constant
dependence removed) of (3.40) of Fring and Köberle [8]; we do not reproduce it here.
‡ If L = 0 then we might, following thel ↔ n− l reciprocity noted [9] forSU(n) boundaryS-matrices broken by
diagonal boundary terms toSU(l)×SU(n− l)×U(1), expect anM ↔ N −M symmetry. But this would place free
and Dirichlet BCs on the same footing, with residualSO(N −M)× SO(M) symmetry, contradicting (13); further,
our reflection matrices are not invariant underM ↔ N −M.
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. . .

m′M−1 = 2m sin

(
(M − 1)π

h

)
sin
(π
h

)
(higher than this and the poles leave the physical strip), with theath multiplet being theath
antisymmetricSO(M) tensor. Notice that theath multiplet is degenerate in mass, and has the
same dimension as, the(M − a)th. As a increases beyondM > N/2 the number of states
falls, with a reciprocityM ↔ h−M, though this does not extend to the masses, whose average
increases asM increases, as seems natural for these BCs.

Finally we note that the scattering described here is off the boundary ground state, but
reflection matricesK [b]

a (θ) also exist for the scattering of theath particle off thebth BBS. For
our matrices (14) we have checked explicitly, using the bootstrap mechanism for these states,
that the second BBS appears as a pole inK

[1]
1 .
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